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a b s t r a c t

Quality function deployment (QFD) is a method used for the manufacturing process of a product or
service that is devoted to transforming customer requirements (CRs) into appropriate engineering
characteristics (ECs) by specifying the importance of the ECs and then setting their target values.
Confronting the inherent vagueness or impreciseness in the QFD process, we embed the fuzzy set theory
into QFD. A fuzzy chance-constrained modelling approach with core philosophies of fuzzy expected
value model and fuzzy chance-constrained programming is used in this paper. Thus, a novel fuzzy
chance-constrained programming model whose objective is to minimize the fuzzy expected cost is
proposed to determine the target values of the ECs with risk control to ensure satisfying CRs. Meanwhile,
when considering the importance of the ECs, we adopt a more reasonable dispose which is to aggregate
the relationships between the CRs and the ECs, and the correlations among the ECs. In order to solve the
presented model, a hybrid intelligent algorithm is designed by integrating fuzzy simulation and genetic
algorithm. Finally, an example of a motor car design is given to demonstrate the feasibility and effectiveness
of the devised modelling approach and algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quality function deployment (QFD), which was originally
developed by Akao [1] in Japan in 1966, is a method used for the
manufacturing process of a product or service that is devoted to
transforming customer requirements (CRs) into appropriate engi-
neering characteristics (ECs) by specifying the importance of the
ECs and then setting their target values. Nowadays, QFD has been
applied in a wide variety of areas such that quality control [13],
decision-making [15], product design and improvement [16]. It is a
customer-driven approach that can create a high level of ‘buy-in’
and reach a better control of the problem.

The typical and significant tool of QFD, House of Quality (HoQ)
[14], which is a diagram that resembles a house, utilizes four sets
of matrices linking what the CRs demand to how the ECs of a
product or service meet these demands. The body of the HoQ is
the relationship matrix of the whats and the hows, while the roof is
the correlation matrix that shows the relevance among the hows.
Besides, the importance vector of the CRs on the left side of the
HoQ refers to the whats, and the matrix of target values of the ECs

on the bottom gives the quantitative technical specifications for
the ECs required to satisfy each CR.

As an important branch of QFD study, more and more systema-
tic and rational methods for the targets setting of the ECs have
received flourishing advances in the last decade, among which
fuzzy modelling approaches were popular to be employed in order
to get close to the fact. In this field, there are three main aspects,
determining the importance of the ECs, rating the priority of the
ECs and the CRs, and programming and solving the models to
obtain target values that have much importance attached to them.

First and foremost, when mentioning the determination of the
importance of the ECs, which is the prerequisite for deciding target
values, the conventional meaning is the weighted sum of the fuzzy
relation measures in the relationship matrix with the importance
weights of the CRs, while the more reasonable way to present the
importance of the ECs should be the aggregated importance of
the ECs, which can be derived by simultaneously considering the
conventional importance of the ECs as well as the impacts of an EC
on other ECs, i.e., the fuzzy correlation measures in the correlation
matrix among the ECs. In previous studies, many utilized the idea of
the aggregated importance of the ECs. For instance, Büyükoz̈kan
et al. [3] used the analytic network process (ANP), the general form
of the analytic hierarchy process (AHP), to prioritize the ECs by
taking into account the aggregated importance. Chen and Weng [5]
obtained the fuzzy normalized relationship matrix, with which
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fuzzy technical importance ratings for design requirements are
determined. Kwong et al. [18] proposed a new methodology
of determining aggregated importance of the ECs, in which fuzzy
relation measures between the CRs and ECs as well as fuzzy
correlation measures among the ECs were determined based on
fuzzy expert systems approach.

Secondly, priority ratings of both the whats and the hows
should also be concerned because they have an effect on the
precedence order of the target values of the ECs getting improved.
Chin et al. [8] presented an evidential reasoning based methodol-
ogy which could be used to help the QFD team prioritize the ECs
with customers’ wants and preferences taken into account, for
synthesizing various types of assessment information provided by
a group of customers and multiple QFD team members. Kwong
et al. [19] designed a novel fuzzy group decision-making method
that integrated a fuzzy weighted average method with a consensus
ordinal ranking technique for prioritizing the ECs in QFD under
uncertainties. Except for the obtainment of the priority ratings of
the ECs above, other elements in the HoQ, e.g., the CRs could also
be given priority ratings, along with the customer satisfaction. Li
et al. [20] developed a systematic and operational method based
on the integration of a minimal deviation based method, balanced
scorecard, AHP and scale method to determine the final priority
ratings of the CRs, while Nepal et al. [26] constructed a fuzzy-AHP
framework for prioritizing customer satisfaction attributes in
target planning. To be thoughtful, Nahm et al. [25] proposed an
approach to prioritize the CRs in the QFD process by developing
two sets of new rating methods, called customer preference rating
method and customer satisfaction rating method, for relative
importance ratings and competitive priority ratings, respectively.

Thirdly, when a given HoQ contains a large number of CRs and
ECs, determining the target values of the ECs would be a very
complex and difficult decision process. Currently, different pro-
gramming models with different functions and the corresponding
algorithms have been exploited by researchers for targets setting.
Cristiano et al. [9] developed a formal, numerically based process
for targets setting by combining ideas from multiattribute decision
analysis, set inclusion, and QFD. Chen et al. [6] proposed a fuzzy
expected value modelling approach for determining target values,
which simultaneously took minimizing the design cost and max-
imizing the customer satisfaction into account. Sener and Karsak
[28,29] developed some fuzzy mathematical programming models
to determine target values of the ECs not only by using the
functional relationships obtained from a nonlinear-programming-
based fuzzy regression, but also by an integrated fuzzy linear
regression and fuzzy multiple objective programming approach.
Moreover, Delice and Güngor̈ [10] proposed a fuzzy mixed-integer
goal programming model that determined a composition of optimal
discrete EC values, following a new decision support system which
integrated QFD and mathematical programming. Chen and Ko [4]
considered the close link between the four sequential phases in a
complete QFD process in the new product development using the
means-end chain concept to build up a series of fuzzy nonlinear
programming models with risk constraint for determining the
attainment levels of each decision outcome for customer satisfac-
tion. Fung et al. [12] considered a fuzzy formulation combined with
a genetic-based interactive approach to determine target values of
the ECs. Bai and Kwong [2] proposed an inexact genetic algorithm
approach to set target values of the ECs.

In this paper, the basic philosophy of fuzzy chance-constrained
programming is used to model the QFD process in a fuzzy environ-
ment in order to determine target values of the ECs for making
different practical decisions. As a result, a fuzzy chance-con-
strained programming model with the objective of minimizing
the fuzzy expected cost and the chance constraint of overall
customer satisfaction is constructed. To consider not only the

inherent fuzziness in the relationships between the CRs and the
ECs, but also those among the ECs, these two kinds of fuzzy
relationships are aggregated to derive the fuzzy importance of the
ECs. So as to effectively solve the proposed model, we design a
hybrid intelligent algorithm, which incorporates fuzzy simulation
and genetic algorithm.

The rest of the paper is organized as follows. In the next section,
some specific aspects of fuzzy variables and fuzzy expected value
operator are discussed. In Section 3, a fuzzy chance-constrained
modelling approach for QFD planning in a fuzzy environment is
presented, and a fuzzy chance-constrained programming model is
then developed to determine the target values of the ECs with risk
control for making different practical decisions of product design. In
order to solve the model, a hybrid intelligent algorithm integrating
fuzzy simulation and genetic algorithm is presented in Section 4.
Finally, an example of motor car design is used to demonstrate the
performance of the proposed approach and algorithm in Section 5.

2. Fuzzy set theory

In the following, we briefly review the concepts of fuzzy
variable, membership function, and expected value operator of
fuzzy variable. Let Θ be a nonempty set, PðΘÞ the power set of Θ,
and Pos a possibility measure. Then the triplet ðΘ;PðΘÞ;PosÞ is
called a possibility space. We use the following mathematical
definition of fuzzy variable in our problem.

Definition 1. A fuzzy variable is defined as a function from a
possibility space ðΘ;PðΘÞ;PosÞ to the set of real numbers.

Therewith, the membership function of a fuzzy variable can be
defined as follows.

Definition 2. Let ~ξ be a fuzzy variable defined on the possibility
space ðΘ;PðΘÞ;PosÞ. Then its membership function is derived from
the possibility measure by

μ~ξ ðxÞ ¼ PosfθAΘj~ξðθÞ ¼ xg; xAR: ð1Þ

Practically, triangular fuzzy numbers, which are the most
widely used form of fuzzy variables and can be easily handled
arithmetically, are adopted to interpret the fuzziness of CRs
and ECs in this paper. Let ~A be a triangular fuzzy number with
membership function μ ~A ðxÞ, and be fully determined by a triplet of
crisp numbers as ~A ¼ ðaL ; a; aRÞ, where a is the central value that
satisfies μ ~A ðaÞ ¼ 1 describing the most possible value of ~A, and aL

and aR are the left and right spreads representing the precision
of ~A which make the lower limit a�aL and the upper limit aþaR,
respectively.

Hence, the triangular fuzzy number ~A can be characterized by
its membership function μ ~A ðxÞ as

μ ~A ðxÞ ¼

aL�ða�xÞ
aL

; a�aLrxra

aR�ðx�aÞ
aR

; arxraþaR

0 otherwise;

8>>>>><
>>>>>:

ð2Þ

or alternatively by its h-cuts ~Ah as

~Ah ¼ fxjμ ~A ðxÞZhg ¼ ½AðhÞ;AðhÞ� ¼ ½a�aLð1�hÞ; aþaRð1�hÞ�: ð3Þ

The arithmetic of fuzzy variables is a direct application of the
extension principle of Zadeh in [31]. For arbitrary triangular fuzzy
numbers ~A ¼ ðaL; a; aRÞ and ~B ¼ ðbL; b; bRÞ, we have the addition and
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subtraction operations

~Aþ ~B ¼ ðaLþbL; aþb; aRþbRÞ;
~A� ~B ¼ ðaL�bR ; a�b; aR�bLÞ; ð4Þ

respectively. What should be noted is that the results of the fuzzy
multiplication and division of triangular fuzzy numbers are actually
not triangular fuzzy numbers anymore, and the precise results can be
obtained through many methodologies (see, e.g., [7,17]), or we can use
fuzzy simulation to obtain the imprecise results according to the
extension principle of Zadeh directly as used in this paper.

In order to measure the chance of fuzzy events, three measures,
i.e., possibility, necessity, and credibility, have been presented.
Suppose that x is a real number, then the possibility, necessity, and
credibility of a fuzzy event f~ξZxg can be defined by

Pos ~ξZx
� �¼ sup

uZx
μ~ξ ðuÞ;

Nec ~ξZx
� �¼ 1�sup

uox
μ~ξ ðuÞ;

Cr ~ξZx
� �¼ 1

2 ðPos ~ξZx
� �þNec ~ξZx

� �Þ; ð5Þ

respectively.
The excepted value operator of random variable plays an

extremely important role in probability theory. For fuzzy variables,
there are many ways to define an expected value operator. In this
paper, we use the definition of the expected value operator of
fuzzy variable given by Liu and Liu [23].

Definition 3 (Liu and Liu [23]). Let ~ξ be a fuzzy variable. Then the
excepted value of ~ξ is defined by

E½~ξ� ¼
Z þ1

0
Crf~ξZxg dx�

Z 0

�1
Crf~ξrxg dx ð6Þ

provided that at least one of the two integrals is finite.

As for a triangular fuzzy number ~A ¼ ðaL; a; aRÞ, to obtain the
expected value E½ ~A�, we need to calculate the credibility via the
possibility and necessity as follows:

Posð ~AZxÞ ¼

1; xra
�xþaþaR

aR
; aoxraþaR

0; x4aþaR ;

8>>><
>>>:

ð7Þ

Posð ~ArxÞ ¼
0; xra�aL

x�aþaL

aL
; a�aLoxra

1; x4a;

8>>><
>>>:

ð8Þ

Necð ~AZxÞ ¼
1; xra�aL

�xþa
aL

; a�aLoxra

0; x4a;

8>><
>>: ð9Þ

Necð ~ArxÞ ¼
0; xra
x�a
aR

; aoxraþaR

1; x4aþaR ;

8>><
>>: ð10Þ

Crð ~AZxÞ ¼

1; xra�aL

�xþaþaL

2aL
; a�aLoxra

�xþaþaR

2aR
; aoxraþaR

0; x4aþaR ;

8>>>>>>><
>>>>>>>:

ð11Þ

Crð ~ArxÞ ¼

0; xra�aL

x�aþaL

2aL
; a�aLoxra

x�aþaR

2aR
; aoxraþaR

1; x4aþaR :

8>>>>>>><
>>>>>>>:

ð12Þ

Therefore, according to Eq. (6), we can get the fuzzy expected
value of ~A as

E½ ~A� ¼
Z þ1

0
Cr ~AZx
n o

dx�
Z 0

�1
Cr ~Arx
n o

dx¼ aRþ4a�aL

4
:

ð13Þ
Considering the linearity of expected value operator, a relative

theorem has been put forward.

Theorem 1 (Liu and Liu [24]). Let ~ξ and ~η be independent fuzzy
variables with finite expected values. Then for any real numbers λ and
δ, we have

E½λ~ξþδ ~η� ¼ λE½~ξ�þδE½~η�: ð14Þ

Suppose that ~A ¼ ðaL; a; aRÞ and ~B ¼ ðbL; b; bRÞ are two indepen-
dent triangular fuzzy numbers. By applying (Eqs. (13) and 14), it is
easy to acquire

E½λ ~Aþδ ~B� ¼ λE½ ~A�þδE½ ~B� ¼ λ

4
ðaRþ4a�aLÞþ δ

4
ðbRþ4b�bLÞ: ð15Þ

3. Model formulations

In QFD, a more realistic objective of the product planning
process than conventional ones is to find target values of the ECs
to minimize the expected design cost under a preferred acceptable
overall customer satisfaction holding at least with a predeter-
mined confidence level, rather than to attain it without any risk.
Practically, the product design is often carried out in the environ-
ments containing imprecise variables like the importance of the
CRs or the ECs. Therefore, a fuzzy chance-constrained program-
ming approach is presented in this section, and a fuzzy excepted
cost minimization model with risk control for determining target
values of the ECs in a fuzzy environment is proposed for inde-
terminate QFD planning.

3.1. Problem description and notations

Our problem is assumed to design a new product with m CRs, n
ECs and p competitors. Before formulating this problem in the
fuzzy environment, let us introduce the following indices, para-
meters, and decision variables used in this paper:

� i¼ 1;2;…;m : the index of customer requirements;
� j¼ 1;2;…;n : the index of engineering characteristics;
� q¼ 1;2;…;p : the index of competitors;
� CRi : the ith customer requirement, i¼ 1;2;…;m;
� ECj : the jth engineering characteristic, j¼ 1;2;…;n;
� Compq : the qth competitor, q¼ 1;2;…; p;
� ~R ¼ ð~r ijÞm�n : the original fuzzy relationship matrix between

the CRs and the ECs, in which ~r ij denotes the fuzzy relation
measure between CRi and ECj; i¼ 1;2;…;m; j¼ 1;2;…;n;

� ~P ¼ ð ~pjkÞn�n : the fuzzy correlation matrix among the ECs, in
which ~pjk denotes the correlation measure between ECj and
ECk; j; k¼ 1;2;…;n;

� ~R
0 ¼ ð~r 0ijÞm�n : the modified fuzzy relationship matrix between

the CRs and the ECs by integrating the fuzzy correlation matrix
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~P , in which ~r 0ij denotes the modified fuzzy relationship measure
between CRi and ECj; i¼ 1;2;…;m; j¼ 1;2;…;n;

� X ¼ ðx1; x2;…; xnÞT : the decision vector of the level of attain-
ment of the ECs, in which xj is the level of attainment of
ECj; 0rxjr1; j¼ 1;2;…;n;

� ~Y ¼ ð ~y1; ~y2;…; ~ymÞT : the fuzzy vector of customer perception of
the CRs, in which ~yi is the customer perception of the satisfac-
tion degree of CRi; i¼ 1;2;…;m;

� ~W ¼ ð ~w1; ~w2;…; ~wmÞT : the fuzzy relative importance vector
of the CRs, in which ~wi is the fuzzy relative importance of
CRi; i¼ 1;2;…;m;

� ~V ¼ ð ~v1; ~v2;…; ~vnÞT : the fuzzy importance vector of the ECs, in
which ~vj is the fuzzy importance of ECj; j¼ 1;2;…;n;

� ~V
0 ¼ ð ~v 0

1; ~v
0
2;…; ~v 0

nÞT : the fuzzy relative importance vector of
the ECs, in which ~v 0

j is the normalized fuzzy importance of
ECj; j¼ 1;2;…;n;

� ~S : the fuzzy overall customer satisfaction;
� ~S

0
: the fuzzy relative overall customer satisfaction;

� lj : the target value of ECj; j¼ 1;2;…;n;
� ~C : the fuzzy total cost of product development;
� ~CF : the fixed part of the fuzzy development cost ~C ;
� ~CV : the variable part of the fuzzy development cost ~C ;
� ~Cj : the fuzzy cost required for achieving xj; j¼ 1;2;…;n;
� ~cj : the fuzzy cost required to improve one unit of xj; j¼

1;2;…;n;
� ρ : the preferred acceptable overall customer satisfaction,

0rρr1;
� α : the predetermined confidence level, 0rαr1.

3.2. Normalization of target values

As different ECs have different units of measurement, it is not
reasonable to evaluate them synthetically by using their respective
raw values. Thus, the normalization of target values of the ECs
becomes a necessary step to transform the incommensurable data
to commensurable ones. In our problem, ljðj¼ 1;2;…;nÞ, which
stands for the current target value of ECj, is changed into the level
of attainment xjðj¼ 1;2;…;nÞ, such that 0rxjr1. For the target
value lj, the performance of the EC is positively proportional to lj
when it pursues a positive goal, or negatively proportional to lj
when it seeks a passive goal. In the practical QFD process, such
positive and passive goals often coexist to cater to different needs.
For instance, in the motor car design, the organization usually
pursues increasing the speed of airbag pop-up(positive goal), and
reducing the time for windshield defogging(passive goal). The two
categories of target values of the ECs can be normalized according
to the following equations:

xj ¼
lj� lmin

j

lmax
j � lmin

j

ðpositive typeÞ ð16Þ

xj ¼
lmax
j � lj

lmax
j � lmin

j

ðpassive typeÞ ð17Þ

where lmax
j and lmin

j can be determined by the consideration of
competition requirements and technology feasibility [32]. In
Eq. (16), lmax

j is the maximum target value of ECj to match
competitors’ performance, and lmin

j is the minimum physical limit,
while in Eq. (17), lmin

j is the minimum target value of ECj to match
competitors’ performance, and lmax

j is the maximum physical limit.

3.3. Formulation of the overall customer satisfaction

In reality, the inherent vagueness or impreciseness in QFD
process of product development always leads to a special challenge

for properly setting target values of the ECs, mainly because of
the linguistic data used to describe the importance degree in HoQ,
the subjective and qualitative way to translate CRs into ECs, and the
limitation of sufficiently getting accurate data especially when an
entirely new product is designed.

Owing to the uncertainties in the product design process, such
as ill-defined or incomplete understanding of the importance of
the CRs, the relationship between the CRs and the ECs, as well as
the correlation among the ECs, these resources can be expressed in
fuzzy terms [11,30]. Therefore, the relative importance vector of
the CRs ~W , the relationship matrix between the CRs and the ECs ~R ,
and the correlation matrix among the ECs ~P are all assumed to be
fuzzy. Accordingly, the deduced customer perception of the CRs ~Y
and the importance of the ECs ~V are also fuzzy vectors.

Now let us consider the overall customer satisfaction ~S , which
reflects the overall customer perception of a product. It is also
fuzzy as it can be considered as a mathematical aggregation of
~yi; i¼ 1;2;…;m, which can be represented as ~S ¼ f ð ~y1; ~y2;…; ~ymÞ.
This aggregate function can usually be expressed as an additive,
multiplicative or multi-linear operator depending on the customer
preference. In this paper, a fuzzy weighted linear additive operator
is adopted to express ~S as follows:

~S ¼ ~W
T ~Y ¼ ∑

m

i ¼ 1
~wi ~yi: ð18Þ

Along with the improvement of target values of the ECs, the
satisfaction degree of each CR can get well promoted according to
[27]. Thus we can obtain

~Y ¼ ~R
0
X ð19Þ

where

~R
0 ¼ ~R ~P ; ð20Þ

i.e.,

~yi ¼ ∑
n

j ¼ 1
∑
n

k ¼ 1
~r ik ~pkjxj; i¼ 1;2;…;m ð21Þ

where ~r ik denotes the strength of relationship between CRi and
ECk, the correlation element ~pkj reflects the contribution to ECj

when ECk is improved, and xj represents the level of attainment
of ECj.

Thus, Eq. (18) can be rewritten as

~S ¼ ~W
T ~R

0
X ¼ ~V

T
X ¼ ∑

n

j ¼ 1
~vjxj ð22Þ

where ~V is the fuzzy importance vector of the ECs, which can be
expressed as

~V ¼ ð ~W
T ~R

0ÞT : ð23Þ
Therefore, the fuzzy importance of ECj can be calculated by

~vj ¼ ∑
m

i ¼ 1
∑
n

k ¼ 1
~wi ~r ik ~pkj; j¼ 1;2;…;n: ð24Þ

From Eq. (24), it can be seen that not only the fuzziness in the
relationships between the CRs and the ECs, but also the correla-
tions among the ECs are aggregated to define the fuzzy importance
of an individual EC, which can be regarded as a more reasonable
way to deal with the uncertainties in the QFD process.

3.4. Formulation of the design cost

Apart from the consideration of customer satisfaction, there
exist other multiple resources required for supporting the devel-
opment of a new product, such as technical expertise, advanced
equipment, tools and other facilities. These resources can be
aggregated in financial terms at the level of strategic planning.
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Due to the usual variations in supply and demand, all of the
incurred costs in the QFD process are handled in fuzzy variables in
this paper. Above all, the fuzzy total development cost ~C can be
viewed as a summation of a fixed part ~CF and a variable part ~CV as

~C ¼ ~CFþ ~CV ð25Þ

where the fuzzy fixed cost ~CF is defined as the basic investment
cost incurred when all the levels of attainment of the ECs are zero,
i.e., x1 ¼ x2 ¼⋯¼ xn ¼ 0, which implies that all the target values of
the ECs lie in the worst status and the overall customer satisfaction
~S is zero. Since the fuzzy cost ~CV is the variable part of the total
development cost ~C only depending on the levels of attainment of
the ECs xj; j¼ 1;2;…;n, it can be acquired by the sum of costs
required for achieving the level of individual EC, i.e.,

~CV ¼ ∑
n

j ¼ 1

~Cj ð26Þ

where ~Cj is the fuzzy cost incurred for improving ECj. For simplicity,
suppose that ~Cj is scaled linearly to the level of attainment xj, i.e.,

~Cj ¼ ~cjxj; j¼ 1;2;…;n ð27Þ

where the fuzzy cost coefficient ~cj stands for the cost required for
improving one unit of xj. In other words, when one unit of
attainment of ECj is fulfilled, a cost item ~cj is incurred. Then
according to (25)–(27), the fuzzy total cost for product development
~C can be represented as

~C ¼ ~CFþ ~CV ¼ ~CFþ ∑
n

j ¼ 1
~cjxj: ð28Þ

3.5. Fuzzy expected cost minimization model with risk control

Standing on the perspective of enterprise, we assume that the
product planning process based on QFD is to determine a set of
levels of attainment x1; x2;…; xn of the ECs for the new product to
minimize the design cost ~C under a preferred acceptable overall
customer satisfaction. It seems very plausible to build such a fuzzy
programming model for QFD planning as follows:

min
X

~C ¼ ~CFþ ∑
n

j ¼ 1
~cjxj

subject to :

∑
n

j ¼ 1
~vjxjZρ

0rxjr1; j¼ 1;2;…;n

8>>>>>>>>><
>>>>>>>>>:

ð29Þ

where the first constraint means that the overall customer
satisfaction ~S ¼∑n

j ¼ 1
~vjxj for a product development is constrained

to a preferred acceptable threshold value ρ as a control of the
overall customer satisfaction. The determination of ρ usually
depends on the decision-maker's preference and subjectivity.

However, the above model (29) is not well defined due to the
fuzzy return function ~C and the first fuzzy constraint. In fact,
the form of fuzzy programming like (29) appears frequently in the
literature. Fuzzy programming constructs a class of mathematical
models, which should be given an explicit explanation. From this
point of view, model (29) does not have a mathematical meaning
because it can have different interpretations. In order to build
an unambiguous fuzzy programming model for QFD planning, we
integrate core philosophies of fuzzy expected value model and
fuzzy chance-constrained programming appropriately.

Firstly, as for the fuzzy objective function, it is natural to
minimize the expected value of the fuzzy total design cost ~C ,

which can be calculated according to (14) as

Eð ~C Þ ¼ Eð ~CFþ ~CV Þ ¼ Eð ~CF ÞþEð ~CV Þ

¼ Eð ~CF ÞþE ∑
n

j ¼ 1
~cjxj

 !
¼ Eð ~CF Þþ ∑

n

j ¼ 1
Eð~cjÞxj ð30Þ

where E is the expected operator defined in (6). Since Eð ~CF Þ is
a constant, which implies min Eð ~C Þ is equivalent to min Eð ~CV Þ
essentially, then the objective function (30) can be replaced as

Eð ~CV Þ ¼ ∑
n

j ¼ 1
Eð~cjÞxj: ð31Þ

Secondly, referring to the first constraint of model (29), as
0rρr1, it is necessary to normalize ~vj to ~v 0

j as

~v 0
j ¼

~vj

∑n
j ¼ 1

~vj
; j¼ 1;2;…;n; ð32Þ

so that an appropriate threshold ρ can be acquired. Here ~v 0
j is

referred to as the fuzzy relative importance of ECj.
Thirdly, since the first constraint ∑n

j ¼ 1
~vjxjZρ does not define

a crisp feasible set, the fuzzy chance-constrained programming
method developed by Liu and Iwamura [21,22] is utilized, the
underlying philosophy of which is to model fuzzy decision systems
with assumptions that the chance constraints hold at least with
some predetermined confidence levels, which are provided
as appropriate safety margins by the decision-maker. Thus, the
constraint ∑n

j ¼ 1
~vjxjZρ can be substituted to a chance constraint

based on the above idea as

Cr ∑
n

j ¼ 1
~v 0
jxjZρ

( )
Zα ð33Þ

where α is the predetermined confidence level generally inter-
preted as the constraint reliability for the overall customer
satisfaction threshold ρ, and Cr is the credibility measure defined
in (5).

Consequently, we formulate the QFD planning problem based
on (Eqs. (31) and 33) as follows:

min
X

Eð ~CV Þ ¼ ∑
n

j ¼ 1
Eð~cjÞxj

subject to :

Cr ∑
n

j ¼ 1
~v 0
jxjZρ

( )
Zα

0rxjr1; j¼ 1;2;…;n

8>>>>>>>>><
>>>>>>>>>:

: ð34Þ

This fuzzy programming model is built for the purpose of mini-
mizing the expected design cost in the QFD planning process of a
new product development, under a preferred acceptable overall
customer satisfaction with an assurance to achieve a predeter-
mined confidence level so as to control risks.

The uncertainty of fuzzy objective and constraint can cause a
considerable risk of the design cost failing to satisfy the customer
requirements for the final product, so we suggest the fuzzy
chance-constrained programming model (34) to overcome this
difficulty, which makes a good tradeoff between the design cost
and the failure risk of not sufficiently meeting the demands of
customers. The risk can be managed by proper combinations of
the satisfaction limitations ρ and the confidence levels α, and the
constraint to the risk guarantees that the failure rate is less than
the predetermined level 1�α.

4. Hybrid intelligent algorithm

It is often difficult to obtain results from fuzzy programming
models by traditional methods. A good way is to design some
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hybrid intelligent algorithms for figuring them out. In this section,
we introduce the design of a hybrid intelligent algorithm integrat-
ing fuzzy simulation and genetic algorithm for solving the pro-
posed model (34).

First, we suppose that all the fuzzy numbers including
~wi ¼ ðwL

i ;wi;wR
i Þ, ~r ik ¼ ðrLik; rik; rRikÞ, and ~pkj ¼ ðpLkj; pkj;pRkjÞ are trian-

gular fuzzy numbers, which are the most widely used form
of fuzzy variables and can be easily handled arithmetically as
referred to in Section 2. When considering the first type of fuzzy
function ∑n

j ¼ 1Eð~cjÞxj, i.e., the objective function of model (34), we
can easily obtain its value by utilizing Eq. (13) for calculating fuzzy
expected values of triangular fuzzy numbers ~cj ¼ ðcLj ; cj; cRj Þ; j¼
1;2;…;n, as follows:

Eð~cjÞ ¼
cRj þ4cj�cLj

4
; ð35Þ

so that the expected cost Eð ~CV Þ can be calculated as

Eð ~CV Þ ¼ ∑
n

j ¼ 1

ðcRj þ4cj�cLj Þxj
4

: ð36Þ

The second type of fuzzy function is

U : X-Cr ∑
n

j ¼ 1
~v 0
jxjZρ

( )
; ð37Þ

which is the credibility of fuzzy event f∑n
j ¼ 1

~v 0
jxjZρg. According to

the definition of credibility given in Eq. (5) as well as Eqs. (24)
and (32), we design a fuzzy simulation to approximatively com-
pute U as follows.

Algorithm 1 (Fuzzy simulation for the credibility).

Step 1: Randomly generate wt
i ; r

t
ik; p

t
kj from the t/M-cuts ð ~wiÞt=M ,

ð~r ikÞt=M , ð ~pkjÞt=M , i¼ 1;2;…, m; k; j¼ 1;2;…;n, t ¼ 1;
2;…;M, respectively, where M is a sufficiently large
number (see Eq. (3) in Section 2 for the calculation of
the t/M-cuts of triangular fuzzy numbers).

Step 2: Compute

S0t ¼ ∑
n

j ¼ 1

∑m
i ¼ 1∑

n
k ¼ 1w

t
i r

t
ikp

t
kj

∑n
j ¼ 1∑

m
i ¼ 1∑

n
k ¼ 1w

t
i r

t
ikp

t
kj

xj

for t ¼ 1;2;…;M.
Step 3: Return L as the credibility calculated, where

L¼ 1
2

max
1r trM

ft=MjS0tZρgþ min
1r trM

f1�t=MjS0toρg
� �

:

Successively, the above fuzzy simulation which can simulate
the credibility is embedded into a genetic algorithm to design a
hybrid intelligent algorithm for searching the optimal solutions of
model (34). The detailed procedures of the hybrid intelligent
algorithm presented in this paper are described as follows.

Algorithm 2 (Hybrid intelligent algorithm).

Step 1: Initialize chromosomes Vi ¼ ðx1; x2;…; xnÞ for i¼ 1;2;…;

pop_size, from the domain ½0;1�n, and the feasibility of
chromosomes can be checked by the proposed fuzzy
simulation (Algorithm 1).

Step 2: Calculate the objective values Eð ~CV Þ according to Eq. (36)
for all chromosomes Vi; i¼ 1;2;…; pop_size.

Step 3: Compute the fitness of all chromosomes Vi; i¼ 1;2;…;

pop_size, by the rank-based evaluation function
EvalðViÞ ¼ að1�aÞi�1; i¼ 1;2;…; pop_size.

Step 4: Select pop_size chromosomes for a new population by
spinning the roulette wheel.

Step 5: Update chromosomes Vi; i¼ 1;2;…; pop_size, by cross-
over and mutation operations, and the feasibility should
also be checked by the proposed fuzzy simulation
(Algorithm 1).

Step 6: Repeat the second to fifth steps for a given number of
iterations.

Step 7: Report the best chromosome Vn ¼ ðxn1; xn2;…; xnnÞ found
according to the fitness values as the optimal levels of
attainment of the ECs.

5. Numerical example

In order to verify the feasibility and effectiveness of the
proposed fuzzy chance-constrained modelling approach and the
corresponding hybrid intelligent algorithm, the development of a
new type of motor car is illustrated as a numerical example, and
the results are also presented and analyzed in this section.

An automobile enterprise is developing a new type of motor
car. The purpose of applying QFD is to explore the effects of both
the overall customer satisfaction and the confidence level on the
target values of the ECs and the total development cost. Thereby, a
dynamic selection approach can be provided to guide the design
team to flexibly determine target values of the ECs for motor car
designing and manufacturing in different environments by recon-
ciling tradeoffs among the competition requirements, the techni-
cal feasibility and the financial factors.

In the first place, an investigation has been conducted into the
potential target market, and we get some feedback from customers,
whose results are displayed in the HoQ in Fig. 1. From the HoQ, we
can see that five major CRs can be identified as the biggest concerns
of the customers, of which the relative fuzzy importance is classified
into five levels to describe the difference of importance. Five sets of
triangular fuzzy numbers, ~w1 ¼ ð0;0;0:25Þ, ~w2 ¼ ð0:25;0:25;0:25Þ,
~w3 ¼ ð0:25;0:5;0:25Þ, ~w4 ¼ ð0:25;0:75;0:25Þ, and ~w5 ¼ ð0:25;1;0Þ,
are used to quantize these five linguistic terms (see Fig. 2).

And then, the detailed contents in the HoQ in Fig. 1 are
determined one after another. The design team first recognizes five
most important ECs related to the CRs based on their professional
knowledge and experience of this product, which are measured in
units of dB, horsepower, gallon, kg and m3. The positive/negative
signs on the ECs indicate that the design team wishes to increase/
reduce the target values of each EC. To identify the fuzzy impor-
tance of the five ECs, the strength of the fuzzy relationship
measures between the CRs and ECs as well as the correlation
measures among the ECs is linguistically judged as four levels,
which can also be represented by triangular fuzzy numbers ~u1 ¼
ð0;0;0:1Þ, ~u1 ¼ ð0:2;0:2;0:2Þ, ~u3 ¼ ð0:3;0:5;0:3Þ, and ~u4 ¼ ð0:3; 1;0Þ
(see Fig. 3). Besides, five competitors are taken into consideration
and their corresponding target values of the ECs are set by the
design teams on the basis of enterprise environments and strate-
gies. The limit values and the fuzzy cost coefficients of the ECs are
confirmed according to industry standards and shown in Fig. 1.

Subsequently, we can start to utilize QFD by the proposed
model and the algorithm. The current target values of the ECs of all
competitors can be normalized by Eqs. (16) and (17) as follows:

ðX1;X2;…;X5ÞT ¼

0:85 0:71 0:62 0 0:34
0:78 0 0:62 0:76 0:45
0:67 0:37 0:59 0:42 0:89
0 0:88 0:55 0:76 0

0:37 0:90 0:84 0:50 0:70

0
BBBBBB@

1
CCCCCCA
: ð38Þ

The fuzzy function (37), i.e., the credibility of the fuzzy relative
overall customer satisfaction ~S

0 ¼∑5
j ¼ 1

~v 0
jxj exceeding a preferred

acceptable value, say 0.6, can be acquired via the fuzzy simulation
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Fuzzy Correlation among the ECs 

Engineering 
Characteristics 

-
EC1

+
EC2

-
EC3

+
EC4

+
EC5

EC1

EC2

EC3

EC4

EC5

Customer 
Requirements 

Fuzzy Relative 
Importance 

Fuzzy Relationship between the CRs and the ECs 

CR1     

CR2     

CR3     

CR4     

CR5     

Competitors 
Target Values of the ECs 

dB horsepower gallon kg m3

Comp1 65.3 81.3 0.0327 15 0.164
Comp2 67.7 60 0.0327 22.6 0.172
Comp3 71.6 71.1 0.0332 19.2 0.202
Comp4 95 86.4 0.0338 22.6 0.14 
Comp5 82.1 87 0.0294 20 0.189 

Min 60 60 0.027 15 0.14 
Max 95 90 0.042 25 0.21 

Fuzzy Cost 
Coefficients 

(3, 25, 5) (1, 10, 2) (2, 15, 3) (0, 10, 2) (1, 8, 2)

CR1: Reducing the noise of car CR2: Enhancing the acceleration CR3: Saving fuel

CR4: Improving security CR5: Raising the seat comfort

EC1: Reducing the noise of the exhaust system

EC2: Increasing the horsepower of the engine

EC3: Reducing the amount of fuel per mile

EC4: Increasing the controlling force of the braking system

EC5: Enlarging the space of the seat

Fig. 1. The house of quality of a motor car.

Fig. 2. Relative fuzzy importance of the CRs.
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method which is introduced in Algorithm 1. The current credibility
of the fuzzy relative overall customer satisfaction of all competi-
tors exceeding the basic satisfaction level ρ¼ 0:6 is shown in
Table 1. Table 1 indicates that the existing design of Comp5

currently has the highest score of Crf ~S 05Z0:6g ¼ 0:61, which
means it is a relatively competitive one with lower risk, while
Comp3 and Comp4 reach relatively poor results with higher
risks. Therefore, there is especially a need for Comp3 and Comp4

to rationalize their existing design in order to outstand their
competitiveness.

It can be verified that the simultaneous variations on both the
preferred acceptable overall customer satisfaction ρ and the
confidence level α will have effects on the attainment of the target
values of the ECs, and a further impact on the expected design
cost, of which the optimal solutions are obtained by employing the
designed hybrid intelligent algorithm (see Algorithm 2). Such
influences are shown in Table 2, and it can be concluded from
Table 2 that the optimal value of the expected cost Eð ~CV Þ increases
along with the enlarging of the preferred acceptable overall
customer satisfaction ρ and the confidence level α. To put it simply,
pursuit of a low cost must bring high risk and low satisfaction.
Along with the reducing of the development cost from the bottom
to top and the right to left in Table 2, the risk level 1�α increases
and the satisfaction level ρ decreases. Besides, notably, when the
confidence level α¼ 1, the constraint of model (34) degenerates
to Crf∑5

j ¼ 1
~v 0
jxjZρg ¼ 1, i.e., ∑5

j ¼ 1
~v 0
jxjZρ must be achieved with

zero risk.

Fig. 3. Fuzzy relationship measures and correlation measures.

Table 1

Credibility of f ~S 0
Z0:6g of five competitors.

Competitor Comp1 Comp2 Comp3 Comp4 Comp5

Crf ~S 0
Z0:6g 0.50 0.46 0.38 0.23 0.61

Ranking 2 3 4 5 1

Table 2

Impacts on expected cost Eð ~CV Þ while ρ and α change.

Eð ~CV Þ ρ¼ 0:1 ρ¼ 0:2 ρ¼ 0:3 ρ¼ 0:4 ρ¼ 0:5 ρ¼ 0:6 ρ¼ 0:7 ρ¼ 0:8 ρ¼ 0:9 ρ¼ 1:0

α¼0.1 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25
α¼0.2 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25
α¼0.3 8.25 8.25 8.25 10.25 15.25 20.75 33.75 36.00 58.43 69.75
α¼0.4 8.25 8.25 10.25 10.25 20.75 25.50 36.00 53.51 63.09 69.75
α¼0.5 8.25 10.25 10.25 20.75 20.75 33.75 44.80 54.93 69.75 69.75
α¼0.6 8.25 10.25 15.25 23.50 33.75 36.00 50.39 56.94 69.75 69.75
α¼0.7 10.25 17.34 22.12 28.42 31.66 43.12 51.60 63.09 69.75 69.75
α¼0.8 11.22 17.49 23.71 31.04 37.77 47.01 56.70 63.09 69.75 69.75
α¼0.9 17.15 30.04 30.04 37.77 37.77 69.75 69.75 69.75 69.75 69.75
α¼1.0 69.75 69.75 69.75 69.75 69.75 69.75 69.75 69.75 69.75 69.75

Fig. 4. Relationship between ρ and target values of EC1 with different α values.
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Furthermore, using the invertible functions of Eqs. (16) and
(17), the target values of an individual EC for different values of ρ
and α can be obtained. By employing Eq. (27), the fuzzy variable
development cost required for improving each EC, i.e.,
~Cj ¼ ðCL

j ;Cj;C
R
j Þ; j¼ 1;2;…;5, can be calculated. The relationships

between the overall customer satisfaction ρ and the target values
of the five ECs while the confidence level α changes are described
in Figs. 4–8.

It can be concluded from Figs. 4–8 that for a fixed risk level 1�α,
the increasing of the satisfaction level ρ makes the target value of an
EC approach its optimal goal, i.e., makes the EC have a high level of
attainment. According to the internal and external environments the
enterprise lies in, the design team can adjust their strategic direction
by choosing different pairs of ρ and α. For example, suppose that the
design team decides to fix their risk level on 1�α¼ 0:4 in a long term.
When the company is in its initial stage of development, the design

Fig. 5. Relationship between ρ and target values of EC2 with different α values.

Fig. 6. Relationship between ρ and target values of EC3 with different α values.
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team focuses more on minimizing the total development cost, which
makes him formulate a relatively low satisfaction level, e.g., ρ¼ 0:4, to
just ensure the customer requirements. If the company has fully
grown, the design team considers to put effort into maintaining
customer loyalty and is able to undertake the incurred cost, that
makes him adopt a relatively high satisfaction level, e.g., ρ¼ 0:8, to
perfectly attain the customer requirements. Therefore, the five plots
provide a dynamic roadmap to help the design team easily determine
the target values of the five ECs of the motor car by selecting different
pairs of customer satisfaction ρ and confidence level α, taking account

of the competition requirements, the technical feasibility, the financial
factors, etc.

6. Conclusions

In this paper, we have contributed to the research area of the
targets setting of the ECs in QFD in the following three aspects:
(i) we utilized a fuzzy chance-constrained modelling approach
to determine the target values of the ECs with risk control in

Fig. 7. Relationship between ρ and target values of EC4 with different α values.

Fig. 8. Relationship between ρ and target values of EC5 with different α values.
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the fuzzy environment; (ii) regarding the importance of the ECs,
we considered not only the relationships between the CRs and
the ECs, but also the correlations among the ECs, i.e., made an
aggregation of them; and (iii) in order to solve the proposed model
efficiently, we integrated fuzzy simulation and genetic algorithm
to design a hybrid intelligent algorithm, which was illustrated by a
numerical example about a motor car design.
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