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Supplier selection is a highly important multi-criteria group decision making problem,
which requires a trade-off between multiple criteria exhibiting vagueness and imprecision
with the involvement of a group of experts. In this paper, a fuzzy multi-criteria group deci-
sion making approach that makes use of the quality function deployment (QFD) concept is
developed for supplier selection process. The proposed methodology initially identifies the
features that the purchased product should possess in order to satisfy the company’s needs,
and then it seeks to establish the relevant supplier assessment criteria. Moreover, the pro-
posed algorithm enables to consider the impacts of inner dependence among supplier
assessment criteria. The upper and the lower bounds of the weights of supplier assessment
criteria and ratings of suppliers are computed by using the fuzzy weighted average (FWA)
method. The FWA method allows for the fusion of imprecise and subjective information
expressed as linguistic variables or fuzzy numbers. The method produces less imprecise
and more realistic overall desirability levels, and thus it rectifies the problem of loss of
information. A fuzzy number ranking method that is based on area measurement is used
to obtain the final ranking of suppliers. The computational procedure of the proposed
framework is illustrated through a supplier selection problem reported in an earlier study.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Supply chain management has become a key aspect that has implications for effective and efficient management of indus-
trial relations. It has also become an important focus for firms and organizations to obtain a competitive advantage [1]. In
facing an ever-increasingly competitive and rapidly changing environment, firms need to reorganize their supply chain man-
agement strategy to harmonize with external environments by integrating the organizational resources, information, and
activities so as to maintain competitive advantages [2].

Supplier’s performance has a key role on cost, quality, delivery and service in achieving the objectives of a supply chain.
Gencer and Gürpinar [3] pointed out that the cost of purchased goods and services accounts for more than 60% of the cost of
goods sold, and over 50% of all quality defects can be traced back to purchase material. Hence, supplier selection is consid-
ered as one of the most critical activities of purchasing management in a supply chain. Selecting the right suppliers signif-
icantly reduces the purchasing cost and improves corporate competitiveness [4]. With the increased emphasis on
manufacturing and organizational philosophies such as total quality management and just in time, all companies are faced
with quality assurance issues in design, manufacturing, purchasing, and delivery. The performance of suppliers has become a
crucial element in a company’s quality success or failure, and clearly influences the responsiveness of the company [5]. The
overall objective of the supplier selection process is to reduce purchase risk, maximize overall value to the purchaser, and
build the closeness and long-term relationships between buyers and suppliers [6].
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At the beginning of the 1980s, Evans [7] found price to be the most important attribute in the purchase of routine prod-
ucts. However, recent studies have discovered a shift away from price as a primary determinant of supplier selection [8].
Organizations, which practice the latest innovations in supply chain management, no longer accept commodity partnerships
that are exclusively based on price. Other important factors such as quality, delivery time and flexibility are included in man-
aging these inter-organizational relationships.

There is a continuing need for robust evaluation models that effectively incorporate several supplier criteria. With its
need to trade-off multiple criteria exhibiting vagueness and imprecision, supplier selection is a highly important multi-
criteria decision making problem. The classical multi-criteria decision making (MCDM) methods that consider deterministic
or random processes cannot effectively address decision problems including imprecise and linguistic information. In prac-
tice, decision making in supplier selection includes a high degree of vagueness and imprecision. Fuzzy set theory is one of
the effective tools to deal with uncertainty and vagueness.

Group decision making is an important concern in MCDM methods. Multiple decision-makers are often preferred to pre-
vent the bias and minimize the partiality in the decision process. For group decision making problems, consensus is an
important indication of group agreement or reliability. In order to fully reflect the real behavior of the group, a final decision
should be made on significant level of consensus. Therefore, aggregation of expert opinions is crucial to properly conduct the
evaluation process.

The objective of this study is to propose a fuzzy multi-criteria group decision making approach based on the quality func-
tion deployment (QFD) concept for supplier selection. In supplier selection process, the company’s ultimate aim is to have
access to suppliers that ensure a certain quality standard in terms of the characteristics of the purchased products or services
[9]. Achieving these objectives depends largely on considering the relationships between purchased product features and
supplier assessment criteria, and also the relationships between supplier assessment criteria disregarding the unrealistic
independence assumption. Thus, constructing a house of quality (HOQ), which enables the relationships among the pur-
chased product features and supplier assessment criteria as well as inner dependence of supplier assessment criteria to
be considered, is key to identify how well each supplier characteristic succeeds in meeting the requirements established
for the product being purchased.

The decision framework developed in this paper considers QFD planning as a fuzzy multi-criteria group decision making
tool and utilizes two interrelated HOQ matrices to evaluate alternative suppliers. When relative weight of purchased product
feature, relationship measure between purchased product feature and supplier assessment criteria and ratings of suppliers
with respect to each supplier assessment criteria are represented as fuzzy numbers, computation of the weights of supplier
assessment criteria and the ratings of suppliers fall into the category of fuzzy weighted average [10]. The proposed approach
calculates both the weights of supplier selection criteria and the ratings of suppliers by using a fuzzy weighted average
method, which develops a pair of fractional programs to calculate the upper and lower bounds of the criteria weights and
the supplier ratings. The FWA method enables the fusion of imprecise and subjective information expressed as linguistic
variables or fuzzy numbers, and alleviates the concern for loss of information. The proposed algorithm allows for considering
the impacts of inner dependence among supplier assessment criteria, thus it disregards the unrealistic mutual independence
assumption of attributes. A ranking method based on area measurement that attempts to alleviate the drawbacks of the
existing fuzzy number ranking methods is employed to rank the potential suppliers. Most ranking methods observe the or-
der of fuzzy numbers and do not measure the degree of difference between them. Furthermore, some of the ranking methods
can only be applied when membership functions are known. This issue can be problematic when one considers that fuzzy
numbers to be ranked are generally the output of fuzzy number aggregation operations and their exact membership func-
tions are unknown. Moreover, the inclusion or omission of fuzzy numbers to or from the comparison may alter the original
ranking [11].

The rest of the paper is organized as follows: The following section presents the literature review on supplier selection.
Section 3 outlines the developed methodology and provides a stepwise representation of the proposed fuzzy decision mak-
ing approach. In Section 4, the application of the proposed framework to a previously reported case study concerning an
enterprise that manufactures complete clutch coupling is illustrated. Finally, conclusions are provided in Section 5.
2. Literature review

Recently, buyer and supplier relationships in manufacturing enterprises have received considerable attention in the busi-
ness–management literature. The purchasing function is increasingly seen as a strategic issue in supply chain hierarchy. We-
ber and Current [12] stated that in high-technology industries, material purchased externally can represent up to 80% of total
product cost. It is vital for the competitiveness of most firms to reduce such purchasing costs to a minimum. In order to
accomplish this, the firm must determine its business partners. This decision was referred as supplier selection problem
by Weber and Current [12]. The complexity of the supplier evaluation and selection problem has motivated the researchers
to develop models for helping decision-makers.

Earlier studies on supplier selection focused on identifying the criteria used to select suppliers. Dickson [13] conducted
one of the earliest works on supplier selection and identified 23 supplier attributes that managers consider when choosing a
supplier. The study concluded that quality, on-time delivery, and performance history were the three most important criteria
in supplier evaluation.
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Ellram [14] noted that supplier selection models may be based on the way in which model proponents believe a decision
should be made (prescriptive) or the way they believe decisions are actually made (descriptive). Descriptive research pro-
vides information on what buyers actually do in selecting suppliers, while prescriptive research emphasizes what should
be done in a normative sense. Descriptive studies have addressed a wide array of issues, and have been extended to identify
supplier selection under specific buying conditions [15–18]. Prescriptive research in supplier selection has used a variety of
methodologies including mathematical programming, weighted average methods, payoff matrices, and the analytic hierar-
chy process (AHP) [19–21].

Most of the research on supplier selection focuses on the quantifiable aspects of the supplier selection decision such as
cost, quality, and delivery reliability. However, as firms become involved in strategic partnerships with their suppliers, a new
set of supplier selection criteria, termed as soft criteria, need to be considered. These criteria are subjective factors that are
difficult to quantify. Fuzzy set theory appears as an effective tool to deal with uncertainty inherent in supplier selection pro-
cess. In the literature, there are a number of studies that use alternative fuzzy decision making techniques to evaluate
suppliers.

Several authors have used fuzzy mathematical programming approaches. Amid et al. [22] presented a fuzzy multi-
objective linear model that considered the vagueness of information in supplier selection problem. Araz et al. [23] proposed
a supplier evaluation and management system for a textile company using fuzzy goal programming. Amid et al. [24] formu-
lated a fuzzy multi-objective model for the supplier selection problem under price breaks that depend on the sizes of order
quantities. Chen [25] employed a fuzzy-based mathematical programming approach to account for multiple criteria and
vagueness within the supplier selection procedure. Recently, Amid et al. [26] developed a weighted max–min fuzzy mul-
ti-objective model to deal with the vagueness of input data and criteria weights effectively in supplier selection.

A number of studies have focused on the use of fuzzy multi-attribute decision making (MADM) techniques for supplier
selection process. Chen et al. [6] extended the technique for order preference by similarity to ideal solution (TOPSIS) to ad-
dress the supplier selection problem under fuzzy environment. Haq and Kannan [27] presented an approach using fuzzy AHP
and genetic algorithm for supplier selection of an original equipment manufacturing company. Chan and Kumar [28] intro-
duced a fuzzy extended AHP based methodology to select the most appropriate global supplier for a manufacturing firm.
Bottani and Rizzi [29] presented a structured approach that integrates cluster analysis and MCDM techniques to identify
the most suitable supplier and purchased items. Chen and Wang [30] employed the fuzzy VIKOR method to construct a sys-
tematic process for evaluating and assessing possible suppliers. Lang et al. [2] combined analytic network process (ANP) and
Choquet integral to assess the supply chain management strategy. Wang [31] proposed a group decision making approach
based on 2-tuple fuzzy linguistic computation model to evaluate the supplier performance.

Lately, a few researchers have employed the QFD in supplier selection. Bevilacqua et al. [9] constructed a house of quality
to identify the features that the purchased product should possess in order to satisfy the customers’ requirements. Then, the
potential suppliers were evaluated against the relevant supplier assessment criteria. Amin and Razmi [32] proposed a two-
phase decision model for supplier management including supplier selection, evaluation, and development. In the first phase,
QFD model was integrated with a quantitative model to select the appropriate internet service providers. In the second
phase, the selected internet service providers were evaluated from customer, performance, and competition perspectives.
Bhattacharya et al. [33] integrated AHP with QFD to rank and subsequently select candidate-suppliers under multiple, con-
flicting nature criteria environment.

Although previously reported studies developed approaches for supplier selection process, further studies are necessary
to integrate imprecise information concerning the importance of purchased product features, relationship between pur-
chased product features and supplier assessment criteria, and dependencies between supplier assessment criteria into the
analysis. A sound decision aid for supplier selection should also aim to rectify the problem of loss of information when com-
puting with linguistic variables. In this paper, a fuzzy multi-criteria group decision making approach based on QFD is devel-
oped. The proposed approach calculates both the weights of supplier selection criteria and the ratings of the suppliers by
using fuzzy weighted average, which produces less imprecise and more realistic overall desirability levels. Then, the final
ranking of the suppliers is obtained through a fuzzy number ranking method enabling to avoid inconsistencies that may
be realized with other ranking methods.
3. Methodology

The proposed decision making framework uses the concepts of QFD, fuzzy weighted average, and a fuzzy number ranking
method based on area measurement. The essentials of QFD and fuzzy weighted average are briefly reviewed in the following
subsections. Then, the proposed decision making methodology is presented.
3.1. Quality function deployment

Quality function deployment is a strategic tool to help companies in developing products that satisfy the desires of
customers. QFD is used to develop better products and services responsive to customer needs (CNs). It employs a cross-
functional team to identify the needs of customer and translate them into design characteristics to plan new or improved
products. QFD ensures a higher quality level that meets customer expectations throughout each stage of product planning.
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Fig. 1. The house of quality.
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QFD allows for the company to allocate resources and to coordinate skills based on CNs, and thus, helps to decrease pro-
duction costs and to reduce the cycle time. It evaluates the necessary decisions for change and development at the beginning
of the product design phase and minimizes the corrections during the entire development process [34].

The basic concept of QFD is to translate the desires of customers into technical attributes (TAs), and subsequently into
parts characteristics, process plans and production requirements [35]. In order to set up these relationships, QFD usually re-
quires four matrices each corresponding to a stage of the product development cycle. These are product planning, part
deployment, process planning, and production/operation planning matrices, respectively. The product planning matrix
translates CNs into TAs; the part deployment matrix translates important TAs into product/part characteristics; the process
planning matrix translates important product/part characteristics into manufacturing operations; the production/operation
planning matrix translates important manufacturing operations into day-to-day operations and controls [36]. In this paper,
we focus on the first and the most widely used of the four matrices, also called the house of quality (HOQ). According to
Hauser and Clausing [37], the HOQ is a kind of conceptual map that provides the means for interfunctional planning and
communications. It contains seven elements as shown in Fig. 1. The seven elements of the HOQ shown in Fig. 1 can be briefly
described as follows:

(1) CNs (WHATs). They are also known as voice of the customer, customer attributes, customer requirements or demanded
quality. The process of building the HOQ begins with the collection of the needs of customers for the product or service
concerned. As the initial input for the HOQ, they highlight the product characteristics that should be paid attention to.
The CNs can include the requirements of retailers or the needs of vendors.

(2) TAs (HOWs). TAs are also known as design requirements, product features, engineering attributes, engineering charac-
teristics or substitute quality characteristics. They describe the product in the language of the engineer; thus, are
sometimes referred as the voice of the company. They are used to determine how well the company satisfies the
CNs [34].

(3) Importance of CNs. Since the collected and organized data from the customers usually contain too many needs to deal
with simultaneously, they must be rated. The company should trade off one benefit against another, and work on the
most important needs while eliminating relatively unimportant ones [34].

(4) Relationships between WHATs and HOWs. The relationship matrix indicates how much each TA affects each CN. In this
paper, linguistic variables are used to denote the relationships between WHATs and HOWs as adopted by several
researchers in earlier studies to address imprecision and vagueness [35,38].

(5) Competitive assessment matrix. This matrix contains a competitive analysis of the company’s product with main com-
petitors’ products for needs. Thus, relative position of the company’s product can be assessed in terms of CNs. The
information needed can be obtained by asking the customers to rate the performance of the company’s and its com-
petitors’ products for each CN using a predetermined scale.

(6) Inner dependence among the TAs. The HOQ’s roof matrix is used to specify the various TAs that have to be improved
collaterally, providing a basis to calculate to what extent a change in one feature will affect other features.
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(7) Overall priorities of the TAs and additional goals. Here, the results obtained from preceding steps are used to calculate a
final rank order of HOWs, also called TA ratings.

3.2. Fuzzy weighted average

Consider the general fuzzy weighted average with n criteria. Define
fW j ¼ fðwj;leW j
ðwjÞÞjwj 2Wjg; j ¼ 1;2; . . . ;n ð1Þ
and
 eXij ¼ fðxij;leX ij
ðxijÞÞjxij 2 Xijg; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n ð2Þ
where fW j is the relative importance of criterion j and eXij denotes the rating of alternative i with respect to criterion j, Wj and
Xij are the crisp universal sets of the relative importance and the rating, and leW j

and leX ij
are the membership functions of the

fuzzy numbers fW j and eXij, respectively. Then, the fuzzy weighted average can be defined as
eY i ¼
Xn

j¼1

fW j
eXij

.Xn

j¼1

fW j; i ¼ 1;2; . . . ;m ð3Þ
Since fW j and eXij are fuzzy numbers, the weighted average eY i is also a fuzzy number. There are several methods devised for
calculating fuzzy weighted average [39–42]. In this paper, the method proposed by Kao and Liu [42] is employed since the
computational complexity of their method is lower compared to other methods. Kao and Liu [42] approached the problem
via mathematical programming technique and developed a pair of fractional programs to find the a-cut of eY i based on the
extension principle. A brief summary of the method is given below.

Denote the a-cuts of fW j and eXij as
ðWjÞa ¼ fwj 2WjjleW j
ðwjÞ � ag; 8j ð4Þ

ðXijÞa ¼ fxij 2 XijjleX ij
ðxijÞ � ag; 8i; j ð5Þ
where ðWjÞa is the interval with the lower bound ðWjÞLa and the upper bound ðWjÞUa at the a-level. Similarly, ðXijÞa is the inter-
val bounded by ðXijÞLa and ðXijÞUa for a given a. These intervals can also be expressed as� � � �� �
ðWjÞa ¼ ðWjÞLa; ðWjÞUa
h i

¼ min
wj

wj 2WjjleW j
ðwjÞ � a ;max

wj

wj 2WjjleW j
ðwjÞ � a ð6Þ

ðXijÞa ¼ ðXijÞLa; ðXijÞUa
h i

¼ min
xij

xij 2 XijjleX ij
ðxijÞ � a

� �
;max

xij

xij 2 XijjleX ij
ðxijÞ � a

� �� �
ð7Þ
According to Zadeh’s extension principle [43], the membership function leY i
can be derived from the following equation:� ,( )
leY i
ðyiÞ ¼ sup

x;w
min leW j

ðwjÞ;leX ij
ðxijÞ;8i; j

���yi ¼
Xn

j¼1

wjxij

Xn

j¼1

wj : ð8Þ
At a specific a-level of eY i, Eq. (8) states that one needs leW j
ðwjÞ � a and leX ij

ðxijÞ � a for "i, j, and at least one leW j
ðwjÞ or

leX ij
ðxijÞ equal to a such that yi ¼

Pn
j¼1wjxij=

Pn
j¼1wj to satisfy leY i

ðyiÞ ¼ a. To find the membership function leY i
, it suffices

to find the right shape function and the left shape function of leY i
, which is equivalent to finding the upper bound ðYiÞUa

and the lower bound ðYiÞLa of eY i at the a-level. Since ðYiÞUa and ðYiÞLa are respectively the maximum and the minimum ofPn
j¼1wjxij=

Pn
j¼1wj, the upper and the lower bounds of the a-cut of eY i can be solved as
ðYiÞUa ¼max
Xn

j¼1

wjxij

.Xn

j¼1

wj
subject to

ðWjÞLa � wj � ðWjÞUa ; j ¼ 1;2; . . . ; n ð9Þ

ðXijÞLa � xij � ðXijÞUa ; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n

ðYiÞLa ¼min
Xn

j¼1

wjxij

.Xn

j¼1

wj
subject to
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ðWjÞLa � wj � ðWjÞUa ; j ¼ 1;2; . . . ; n ð10Þ

ðXijÞLa � xij � ðXijÞUa ; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ; n
It is obvious that the maximum of yi must occur at ðXijÞUa and the minimum must occur at ðXijÞLa. Thus, the variable xij in the
objective function of formulations (9) and (10) can be replaced by ðXijÞUa and ðXijÞLa, respectively. Following the variable sub-
stitution of Charnes and Cooper [44], by letting t�1 ¼

Pn
j¼1wj and vj = twj, formulations (9) and (10) can be transformed to the

following linear programs:
ðYiÞUa ¼ max
Xn

j¼1

v jðXijÞUa
subject to
tðWjÞLa � v j � tðWjÞUa ; j ¼ 1;2; . . . ; n ð11Þ

Xn

j¼1

v j ¼ 1

t; v j � 0; j ¼ 1;2; . . . ;n

ðYiÞLa ¼min
Xn

j¼1

v jðXijÞLa
subject to
tðWjÞLa � v j � tðWjÞUa ; j ¼ 1;2; . . . ; n ð12Þ

Xn

j¼1

v j ¼ 1

t; v j � 0; j ¼ 1;2; . . . ;n
The a-cuts of eY i is the crisp interval ðYiÞLa; ðYiÞUa
h i

solved from formulations (11) and (12). By enumerating different a

values, the membership function leY i
can be constructed.

3.3. Proposed decision making algorithm

This subsection outlines the fuzzy multi-criteria group decision making algorithm based on the principles of fuzzy QFD
methodology. In traditional QFD applications, the company has to identify its customers’ expectations and their relative
importance to determine the design characteristics for which resources should be allocated. On the other hand, when the
HOQ is used in supplier selection, the company starts with the features that the outsourced product/service must possess
to meet certain requirements that the company has established, and then tries to identify which of the suppliers’ attributes
have the greatest impact on the achievement of its established objectives [9].

Bevilacqua et al. [9] used the QFD in supplier selection process. The algorithm proposed here differs from Bevilacqua
et al.’s approach in several aspects. First, the proposed algorithm uses the fuzzy weighted average to calculate the upper
and lower bounds of the weights of the TAs and the supplier assessments. Further, the proposed algorithm enables to con-
sider the impacts of inner dependence among design requirements. Moreover, it employs a fuzzy number ranking method
based on area measurement. This ranking method considers the loci of left and right spreads at each a-level of a group of
fuzzy numbers and the horizontal-axis locations of the group of fuzzy numbers based on their common maximizing and
minimizing barriers simultaneously. It combines the above techniques with the summation of interval subtractions as an
area measurement to enable a more robust ranking than the other existing ranking methods [11].

The detailed stepwise representation of the proposed fuzzy MCDM algorithm that is also depicted in Fig. 2 is given below.
Step 1. Construct a decision-makers’ committee of Z experts (z = 1,2, . . . ,Z). Identify the characteristics that the product

being purchased must possess (CNs) in order to meet the company’s needs and the criteria relevant to supplier assessment
(TAs).

Step 2. Construct the decision matrices for each decision-maker that denote the relative importance of CNs, and the fuzzy
assessment to determine the CN–TA relationship scores.

Step 3. Let the fuzzy value assigned as the relationship score between the lth CN (I = 1,2, . . . ,L) and the kth TA
(k = 1,2, . . . ,K), and importance weight of the lth CN for the zth decision-maker be exklz ¼ ðx1

klz; x
2
klz; x

3
klzÞ and
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Fig. 2. Representation of the fuzzy MCDM algorithm.
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ewlz ¼ ðw1
lz;w

2
lz;w

3
lzÞ, respectively. Compute the aggregated fuzzy assessment of the relationship scores between the kth TA and

the lth CN ðexklÞ, and aggregated importance weight of the lth CN ð ewlÞ as follows:
exkl ¼
XZ

z¼1

Xzexklz ð13Þ

ewl ¼
XZ

z¼1

Xz ewlz ð14Þ
where Xz 2 ½0;1� denotes the weight of the zth decision-maker and
PZ

z¼1Xz ¼ 1.
Step 4. Construct the inner dependence matrix among the TAs, and compute the original relationship measure between

the kth TA and the lth CN, eX�kl. Let Dkk0 denote the degree of dependence of the kth TA on the k0th TA. Then, according to Fung
et al. [45] and Tang et al. [46], the original relationship measure between the kth TA and the lth CN should be rewritten as
eX �kl ¼
XK

k0¼1

Dkk0exk0 l ð15Þ
where eX�kl is the actual relationship measure after consideration of the inner dependence among TAs. Note that the correla-
tion matrix D is a symmetric matrix. A design requirement has the strongest dependence on itself, i.e. Dkk is assigned to be 1.
If there is no dependence between the kth and the k0th TAs, then Dkk0 = 0.
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Step 5. Calculate the upper and lower bounds of the weight for each TA by employing formulations (11) and (12).
Step 6. Construct the decision matrices for each decision-maker that denote the ratings of each potential supplier with

respect to each TA.
Step 7. Aggregate the ratings of suppliers using Eq. (13).
Step 8. Compute the upper and lower bounds for each supplier by utilizing formulations (11) and (12). This time, the rel-

ative importance expressed in formulations (11) and (12) are the upper and lower bounds of the weight for each TA calcu-
lated at Step 5.

Step 9. Rank the suppliers by employing Chen and Klein’s [11] ranking algorithm, which can be summarized as follows:
Let eX1; eX2; . . . ; eXi; . . . ; eXm be m arbitrary bounded fuzzy numbers, and h denote the maximum height of leX i

, i = 1, 2, . . . , m.
Suppose h is equally divided into s intervals such that ap = ph/s, p = 0, 1, 2, . . . , s. Chen and Klein [11] devise the following
index for ranking fuzzy numbers
Ii ¼
Xs

p¼0

ðXiÞUap
� c

� �. Xs

p¼0

ðXiÞUap
� c

� �
�
Xs

p¼0

ðXiÞLap
� d

� � !
; n!1 ð16Þ
where c ¼minp;i ðXipÞLap

n o
and d ¼ maxp;i ðXipÞUap

n o
. The larger the ranking index Ii, the more preferred the fuzzy number is.
4. Illustrative example

A supplier selection problem addressed in an earlier work by Bevilacqua et al. [9] is used to test the effectiveness of the
proposed fuzzy MCDM framework. The problem can be summarized as follows.

The analysis is performed for the selection of clutch plate suppliers for a medium-to-large enterprise that manufactures
complete clutch coupling. The main features sought in this component are an excellent design and a very accurate construc-
tion to ensure a trouble-free, smooth operation even at high production rates. There are 10 suppliers who are in contact with
the company.

There are six fundamental characteristics (CNs) required of products or services purchased from outside suppliers by the
company considered in this study. These can be listed as ‘‘product conformity’’, ‘‘cost’’, ‘‘punctuality of deliveries’’, ‘‘efficacy
of corrective action’’, ‘‘programming of deliveries’’, and ‘‘availability and customer support’’.

Seven criteria relevant to supplier assessment are identified as ‘‘experience of the sector (EF)’’, ‘‘capacity for innovation to
follow up the customer’s evolution in terms of changes in its strategy and market (IN)’’, ‘‘quality system certification (SQ)’’,
‘‘flexibility of response to the customer’s requests (FL)’’, ‘‘financial stability (FS)’’, ‘‘ability to manage orders on-line (RR)’’, and
‘‘geographical position (PG)’’.

The evaluation is conducted by a committee of three decision-makers. The decision-makers use the linguistic variables
given in Table 1 to denote the level of importance of each CN and the impact of each TA on each CN as shown in Fig. 3,
and the ratings of the suppliers with respect to each TA as provided in Table 2. The data related to supplier selection that
Table 1
Linguistic term set [9].

Very low (VL) (0, 1, 2)
Low (L) (2, 3, 4)
Medium (M) (4, 5, 6)
High (H) (6, 7, 8)
Very high (VH) (8, 9, 10)

INEF SQ FL FS RR PG

Importance 
of 

Customer 
Needs

Conformity (VH,H,H) (VH,VH,VH) (L,VL,VL) (M,L,L) (L,VL,VL) (H,H,H) (L,L,L) (VH,VH,H)

Cost (M,M,L) (H,H,M) (VH,VH,VH) (L,L,L) (M,M,M) (L,L,VL) (M,M,H) (M,L,M) 

Punctuality (H,M,H) (M,M,M) (L,L,L) (H,VH,VH) (L,L,L) (VH,VH,VH) (H,H,H) (H,M,M) 

Efficacy (H,H,VH) (VH,VH,VH) (M,L,L) (H,VH,VH) (L,L,L) (M,VL,H) (L,VL,VL) (M,M,L) 

Programming (H,H,H) (H,H,M) (L,L,L) (M,M,M) (L,VL,VL) (H,H,H) (VL,VL,VL) (L,VL,L) 

Availability (H,M,H) (VH,VH,H) (VL,L,L) (H,VH,VH) (M,M,M) (H,H,VH) (H,H,VH) (M,L,L) 

Technical 
Attributes 

Customer 
Needs 

Fig. 3. First house of quality for the supplier selection problem.



Table 2
Ratings of suppliers with respect to TAs.

TAs Suppliers

Sup 1 Sup 2 Sup 3 Sup 4 Sup 5 Sup 6 Sup 7 Sup 8 Sup 9 Sup 10

EF (M,L,M) (H,H,H) (L,M,VL) (M,M,L) (VH,VH,VH) (H,VH,VH) (VL,L,VL) (L,L,H) (M,M,M) (H,H,H)
IN (L,M,L) (H,M,M) (VH,H,VH) (H,H,H) (VH,VH,VH) (L,VL,L) (M,M,M) (M,H,M) (H,H,H) (VL,L,VL)
SQ (M,L,M) (M,M,H) (VH,VH,H) (VL,VL,L) (VL,VL,VL) (M,M,L) (VH,VH,VH) (H,H,H) (M,M,L) (M,M,H)
FL (M,M,H) (VH,VH,H) (L,L,L) (VL,VL,L) (H,H,H) (M,M,M) (H,VH,VH) (VL,VL,L) (L,H,L) (L,L,VL)
FS (M,M,M) (VH,VH,VH) (L,L,L) (H,H,H) (M,M,L) (H,H,VH) (L,L,L) (H,H,H) (VL,VL,VL) (VH,VH,H)
RR (VL,L,L) (VL,L,VL) (VL,L,L) (VL,VL,VL) (L,L,M) (VL,VL,VL) (M,M,H) (VH,VH,VH) (VL,VL,L) (VL,VL,M)
PG (VL,M,L) (L,L,M) (VL,L,VL) (VH,H,H) (VL,VL,M) (VL,VL,L) (L,M,L) (VL,VL,L) (VL,VL,L) (VL,VL,M)

Table 3
Aggregated importance of each CN.

Customer needs Importance

Conformity (7.333,8.333,9.333)
Cost (3.333,4.333,5.333)
Punctuality (4.667,5.667,6.667)
Efficacy (3.333,4.333,5.333)
Programming (1.333,2.333,3.333)
Availability (2.667,3.667,4.667)

Table 4
Aggregated impact of each TA on each CN.

CNs TAs

EF IN SQ FL FS RR PG

Conformity (6.667,7.667,8.667) (8,9,10) (0.667,1.667,2.667) (2.667,3.667,4.667) (0.667,1.667,2.667) (6,7,8) (2,3,4)
Cost (3.333,4.333,5.333) (5.333,6.333,7.333) (8,9,10) (2,3,4) (4,5,6) (1.333,2.333,3.333) (4.667,5.667,6.667)
Punctuality (5.333,6.333,7.333) (4,5,6) (2,3,4) (7.333,8.333,9.333) (2,3,4) (8,9,10) (6,7,8)
Efficacy (6.667,7.667,8.667) (8,9,10) (2.667,3.667,4.667) (7.333,8.333,9.333) (2,3,4) (3.333,4.333,5.333) (0.667,1.667,2.667)
Programming (6,7,8) (5.333,6.333,7.333) (2,3,4) (4,5,6) (0.667,1.667,2.667) (6,7,8) (0,1,2)
Availability (5.333,6.333,7.333) (7.333,8.333,9.333) (1.333,2.333,3.333) (7.333,8.333,9.333) (4,5,6) (6.667,7.667,8.667) (6.667,7.667,8.667)

Table 5
Upper and lower bounds of the weight of TAs.

TAs a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EF ðYEF ÞLa 5.488 5.607 5.726 5.844 5.963 6.081 6.2 6.319 6.437 6.556 6.674

ðYEF ÞUa 7.861 7.742 7.623 7.505 7.386 7.267 7.149 7.03 6.912 6.793 6.674

IN ðYINÞLa 6.201 6.332 6.462 6.592 6.722 6.853 6.983 7.113 7.243 7.373 7.504

ðYINÞUa 8.806 8.676 8.546 8.415 8.285 8.155 8.025 7.894 7.764 7.634 7.504

SQ ðYSQ ÞLa 2.217 2.347 2.478 2.608 2.739 2.871 3.003 3.135 3.268 3.401 3.535

ðYSQ ÞUa 4.919 4.775 4.633 4.491 4.351 4.213 4.075 3.939 3.804 3.669 3.535

FL ðYFLÞLa 4.434 4.581 4.727 4.874 5.02 5.167 5.313 5.46 5.606 5.753 5.899

ðYFLÞUa 7.364 7.218 7.071 6.925 6.778 6.632 6.485 6.339 6.192 6.046 5.899

FS ðYFSÞLa 1.817 1.943 2.069 2.194 2.319 2.444 2.568 2.692 2.815 2.939 3.062

ðYFSÞUa 4.317 4.19 4.063 3.937 3.811 3.685 3.56 3.435 3.31 3.186 3.062

RR ðYRRÞLa 4.95 5.095 5.239 5.383 5.526 5.669 5.811 5.952 6.092 6.233 6.372

ðYRRÞUa 7.739 7.605 7.47 7.334 7.198 7.062 6.925 6.788 6.65 6.511 6.372

PG ðYPGÞLa 2.915 3.066 3.217 3.368 3.52 3.671 3.822 3.973 4.124 4.275 4.427

ðYPGÞUa 5.938 5.787 5.636 5.485 5.334 5.182 5.031 4.88 4.729 4.578 4.427

5872 M. Dursun, E.E. Karsak / Applied Mathematical Modelling 37 (2013) 5864–5875
are provided in the HOQ depicted in Fig. 3 and in Table 2 consist of assessments of three decision-makers employing linguis-
tic variables represented in Table 1.

By using Eqs. (13) and (14), the decision-makers’ evaluations are aggregated to obtain the aggregated importance of each
CN and the aggregated impact of each TA on each CN. In our case, one shall note that X1 = X2 = X3 = 1/3 since equal weights
are assigned to each decision-maker. The results are presented in Tables 3 and 4.



Table 6
Aggregated ratings of suppliers.

Suppliers TAs

EF IN SQ FL FS RR PG

Sup 1 (3.333,
4.333,5.333)

(2.667, 3.667,
4.667)

(3.333, 4.333,
5.333)

(4.667, 5.667,
6.667)

(4.000, 5.000,
6.000)

(1.333, 2.333,
3.333)

(2.000, 3.000,
4.000)

Sup 2 (6.000, 7.000,
8.000)

(4.667, 5.667,
6.667)

(4.667, 5.667,
6.667)

(7.333, 8.333,
9.333)

(8.000, 9.000,
10.000)

(0.667, 1.667,
2.667)

(2.667, 3.667,
4.667)

Sup 3 (2.000, 3.000,
4.000)

(7.333, 8.333,
9.333)

(7.333, 8.333,
9.333)

(2.000, 3.000,
4.000)

(2.000, 3.000,
4.000)

(1.333, 2.333,
3.333)

(0.667, 1.667,
2.667)

Sup 4 (3.333, 4.333,
5.333)

(6.000, 7.000,
8.000)

(0.667, 1.667,
2.667)

(0.667, 1.667,
2.667)

(6.000, 7.000,
8.000)

(0.000, 1.000,
2.000)

(6.667, 7.667,
8.667)

Sup 5 (8.000, 9.000,
10.000)

(8.000, 9.000,
10.000)

(0.000, 1.000,
2.000)

(6.000, 7.000,
8.000)

(3.333, 4.333,
5.333)

(2.667, 3.667,
4.667)

(1.333, 2.333,
3.333)

Sup 6 (7.333, 8.333,
9.333)

(1.333, 2.333,
3.333)

(3.333, 4.333,
5.333)

(4.000, 5.000,
6.000)

(6.667, 7.667,
8.667)

(0.000, 1.000,
2.000)

(0.667, 1.667,
2.667)

Sup 7 (0.667, 1.667,
2.667)

(4.000, 5.000,
6.000)

(8.000, 9.000,
10.000)

(7.333, 8.333,
9.333)

(2.000, 3.000,
4.000)

(4.667, 5.667,
6.667)

(2.667, 3.667,
4.667)

Sup 8 (3.333, 4.333,
5.333)

(4.667, 5.667,
6.667)

(6.000, 7.000,
8.000)

(0.667, 1.667,
2.667)

(6.000, 7.000,
8.000)

(8.000, 9.000,
10.000)

(0.667, 1.667,
2.667)

Sup 9 (4.000, 5.000,
6.000)

(6.000, 7.000,
8.000)

(3.333, 4.333,
5.333)

(3.333, 4.333,
5.333)

(0.000, 1.000,
2.000)

(0.667, 1.667,
2.667)

(0.667, 1.667,
2.667)

Sup 10 (6.000, 7.000,
8.000)

(0.667, 1.667,
2.667)

(4.667, 5.667,
6.667)

(1.333, 2.333,
3.333)

(7.333, 8.333,
9.333)

(1.333, 2.333,
3.333)

(1.333, 2.333,
3.333)
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In the supplier selection problem presented in Bevilacqua et al. [9], inner dependencies among the TAs do not exist. Thus,
the aggregated impact of each TA on each CN is equivalent to the original relationship measure between TAs and CNs.

The upper and lower bounds of the weight of TAs are calculated through formulations (11) and (12) as represented in
Table 5.

The ratings of suppliers are aggregated by employing Eq. (13). The results are shown in Table 6.
By utilizing formulations (11) and (12), the upper and lower bounds for supplier ratings are calculated as given in Table 7.
Finally, the ranking index (I) for each supplier is computed employing Eq. (16). The ranking indices are I(sup1) =

0.350, I(sup2) = 0.608, I(sup3) = 0.410, I(sup4) = 0.399, I(sup5) = 0.632, I(sup6) = 0.383, I(sup7) = 0.523, I(sup8) = 0.526,
I(sup9) = 0.351, and I(sup10) = 0.340. Hence, the ranking order of the suppliers is Sup5 � Sup2 � Sup8 � Sup7 �
Sup3 � Sup4 � Sup6 � Sup9 � Sup1 � Sup10.

In here, the results of the proposed decision algorithm are compared with the results obtained by Bevilacqua et al. [9].
Table 8 summarizes the results obtained from these two alternative procedures. We observe that supplier 5 is determined
Table 7
Upper and lower bounds of the supplier ratings.

Suppliers a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sup 1 ðYsup1ÞLa 2.726 2.850 2.975 3.099 3.223 3.348 3.472 3.596 3.719 3.843 3.967

ðYsup1ÞUa 5.198 5.075 4.952 4.829 4.706 4.583 4.460 4.337 4.214 4.090 3.967

Sup 2 ðYsup2ÞLa 4.146 4.304 4.461 4.617 4.772 4.926 5.079 5.231 5.381 5.531 5.680

ðYsup2ÞUa 7.194 7.040 6.886 6.734 6.582 6.430 6.279 6.128 5.978 5.829 5.680

Sup 3 ðYsup3ÞLa 2.764 2.913 3.062 3.213 3.364 3.517 3.671 3.827 3.983 4.141 4.300

ðYsup3ÞUa 5.978 5.804 5.630 5.457 5.287 5.118 4.951 4.786 4.623 4.461 4.300

Sup 4 ðYsup4ÞLa 2.580 2.748 2.916 3.083 3.250 3.416 3.582 3.747 3.912 4.077 4.241

ðYsup4ÞUa 5.902 5.733 5.565 5.398 5.231 5.065 4.899 4.734 4.569 4.405 4.241

Sup 5 ðYsup5ÞLa 4.177 4.343 4.509 4.676 4.843 5.011 5.179 5.347 5.516 5.685 5.855

ðYsup5ÞUa 7.585 7.409 7.234 7.059 6.885 6.712 6.539 6.367 6.196 6.025 5.855

Sup 6 ðYsup6ÞLa 2.557 2.717 2.877 3.036 3.194 3.353 3.511 3.669 3.826 3.984 4.141

ðYsup6ÞUa 5.726 5.565 5.404 5.244 5.084 4.925 4.767 4.610 4.454 4.298 4.141

Sup 7 ðYsup7ÞLa 3.560 3.716 3.872 4.027 4.182 4.336 4.490 4.643 4.796 4.948 5.101

ðYsup7ÞUa 6.647 6.490 6.334 6.178 6.023 5.868 5.714 5.560 5.407 5.254 5.101

Sup 8 ðYsup8ÞLa 3.516 3.680 3.842 4.005 4.167 4.328 4.489 4.650 4.810 4.969 5.129

ðYsup8ÞUa 6.706 6.547 6.391 6.234 6.077 5.920 5.762 5.604 5.446 5.288 5.129

Sup 9 ðYsup9ÞLa 2.489 2.636 2.783 2.929 3.075 3.221 3.366 3.511 3.656 3.801 3.945

ðYsup9ÞUa 5.385 5.235 5.092 4.950 4.807 4.663 4.520 4.377 4.233 4.089 3.945

Sup 10 ðYsup10ÞLa 2.299 2.451 2.603 2.755 2.908 3.061 3.215 3.369 3.524 3.680 3.836

ðYsup10ÞUa 5.436 5.272 5.110 4.948 4.787 4.626 4.467 4.308 4.150 3.992 3.836



Table 8
Comparative rankings of the suppliers using the proposed algorithm and Bevilacqua et al.’s algorithm.

Suppliers Ranking index values of the proposed
algorithm

Rank Bevilacqua et al.’s algorithm

Rank obtained using fuzzy suitability
index

Rank obtained using
defuzzification

Sup 1 0.350 9 Incomparable 8
Sup 2 0.608 2 2 2
Sup 3 0.410 5 5 5
Sup 4 0.399 6 6 6
Sup 5 0.632 1 1 1
Sup 6 0.383 7 7 7
Sup 7 0.523 4 4 4
Sup 8 0.526 3 3 3
Sup 9 0.351 8 Incomparable 9
Sup 10 0.340 10 Incomparable 10

5874 M. Dursun, E.E. Karsak / Applied Mathematical Modelling 37 (2013) 5864–5875
as the most suitable supplier by the two methods, which is followed by supplier 2 and then by supplier 8 and supplier 7. The
fuzzy ranking principle of Bevilacqua et al. [9] cannot compare suppliers 1, 9, and 10, while the algorithm proposed in this
study provides a complete ranking of all suppliers. This is due to the minimization of the loss of information by using the
fuzzy weighted average method and the higher discriminating power of the fuzzy number ranking method employed in this
paper. Further, Bevilacqua et al. [9] implemented a fuzzy number defuzzification scheme to obtain a complete ranking of the
suppliers, which also identifies supplier 5 as the most appropriate supplier. However, defuzzification approaches suffer from
the limitation of associating each fuzzy quantity with only one real number. Freeling [47] pointed out that by reducing the
whole analysis to a single number, much of the information which has been intentionally kept throughout calculations is
lost. Thus, defuzzification basically contradicts with the key objective of minimizing the loss of information throughout
the analysis.

5. Conclusions

Supplier selection is an important multi-criteria group decision making problem, which possesses the need to evaluate
multiple criteria incorporating vagueness and imprecision with the involvement of a group of experts. The classical MCDM
methods that consider deterministic or random processes cannot effectively address supplier selection problems since fuzz-
iness, imprecision and interaction coexist in real-world. In this paper, a fuzzy multi-criteria group decision making algorithm
is presented to rectify the problems encountered when using classical decision making methods in supplier selection.

The procedure used in this paper considers the QFD planning, which incorporates two interrelated HOQ matrices, as a
fuzzy multi-criteria group decision tool and employs FWA method to calculate the upper and lower bounds of the weights
of supplier selection criteria and the ratings of the suppliers. The upper and lower bounds of the weights of supplier selection
criteria are computed by applying FWA to the data given in the first HOQ, whereas the upper and lower bounds of the ratings
of suppliers are subsequently determined by employing FWA considering the weights of supplier selection criteria as inputs
in the second HOQ. As most fuzzy number ranking methods can hardly be applied in this case, a ranking method that is re-
ported to be more efficient and accurate than its predecessors is employed to rank the suppliers [11].

The proposed methodology possesses a number of merits compared to other MCDM techniques presented in the litera-
ture for supplier selection. First, the developed method is a group decision making process which enables the group to iden-
tify and better appreciate the differences and similarities of their judgments. Second, the proposed approach is apt to
incorporate imprecise data into the analysis using fuzzy set theory. Third, this methodology enables to consider the impacts
of relationships among the purchased product features and supplier selection criteria, and also the inner dependence among
supplier selection criteria for achieving higher satisfaction to meet company’s requirements. Fourth, in order to calculate the
upper and lower bounds of the weights of the supplier selection criteria and the supplier assessments, the proposed method
uses the fuzzy weighted average method that rectifies the problem of loss of information that occurs when integrating
imprecise and subjective information. Thus, it is likely to produce more realistic overall desirability levels. Finally, the pro-
posed approach employs a fuzzy number ranking method based on area measurement, which has a high ability to discrim-
inate among the fuzzy numbers to be ranked. Future research will focus on applying the decision framework presented in
here to real-world group decision making problems in diverse disciplines that can be represented in a HOQ structure.
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